Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms

  • Muchisha N
  • Tamara N
  • Andriansyah A
  • et al.
N/ACitations
Citations of this article
25Readers
Mendeley users who have this article in their library.

Abstract

GDP is very important to be monitored in real time because of its usefulness for policy making. We built and compared the ML models to forecast real-time Indonesia's GDP growth. We used 18 variables that consist a number of quarterly macroeconomic and financial market statistics. We have evaluated the performance of six popular ML algorithms, such as Random Forest, LASSO, Ridge, Elastic Net, Neural Networks, and Support Vector Machines, in doing real-time forecast on GDP growth from 2013:Q3 to 2019:Q4 period. We used the RMSE, MAD, and Pearson correlation coefficient as measurements of forecast accuracy. The results showed that the performance of all these models outperformed AR (1) benchmark. The individual model that showed the best performance is random forest. To gain more accurate forecast result, we run forecast combination using equal weighting and lasso regression. The best model was obtained from forecast combination using lasso regression with selected ML models, which are Random Forest, Ridge, Support Vector Machine, and Neural Network.

Cite

CITATION STYLE

APA

Muchisha, N. D., Tamara, N., Andriansyah, A., & Soleh, A. M. (2021). Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms. Indonesian Journal of Statistics and Its Applications, 5(2), 355–368. https://doi.org/10.29244/ijsa.v5i2p355-368

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free