Fisher’s z distribution‐based mixture autoregressive model

6Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

We generalize the Gaussian Mixture Autoregressive (GMAR) model to the Fisher’s z Mixture Autoregressive (ZMAR) model for modeling nonlinear time series. The model consists of a mixture of K‐component Fisher’s z autoregressive models with the mixing proportions changing over time. This model can capture time series with both heteroskedasticity and multimodal conditional distribution, using Fisher’s z distribution as an innovation in the MAR model. The ZMAR model is classified as nonlinearity in the level (or mode) model because the mode of the Fisher’s z distribution is stable in its location parameter, whether symmetric or asymmetric. Using the Markov Chain Monte Carlo (MCMC) algorithm, e.g., the No‐U‐Turn Sampler (NUTS), we conducted a simulation study to investigate the model performance compared to the GMAR model and Student t Mixture Autoregressive (TMAR) model. The models are applied to the daily IBM stock prices and the monthly Brent crude oil prices. The results show that the proposed model outperforms the ex-isting ones, as indicated by the Pareto‐Smoothed Important Sampling Leave‐One‐Out cross‐valida-tion (PSIS‐LOO) minimum criterion.

Cite

CITATION STYLE

APA

Solikhah, A., Kuswanto, H., Iriawan, N., & Fithriasari, K. (2021). Fisher’s z distribution‐based mixture autoregressive model. Econometrics, 9(3). https://doi.org/10.3390/econometrics9030027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free