Background: The bulldog calf syndrome is a lethal form of the inherited congenital chondrodysplasias. Among the progeny of the polled Holstein bull Energy P cases of lethal chondrodysplasia were observed. Pedigrees of the cases and the frequency of 3/8 cases among the offspring of Energy P at our teaching and experimental farm Ruthe (LuFG Ruthe) supported the assumption of a germline mutation with a mosaic of normal and defective sperm. Results: All three malformed calves were examined using necropsy, histopathology and computed tomography scanning. The phenotypic appearance of the affected calves was highly similar; they presented with severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by brachygnathia superior, bilateral palatoschisis, shortening and compression of the body due to malformed vertebrae, in their size reduced and malformed ribs and reduced length of the long bones of the limbs. The bones had small irregular diaphyses and enlarged epiphyses. Whole genome sequencing of one bulldog calf, sperm of its sire Energy P and a normal progeny of Energy P identified a deleterious missense mutation (g.32476082G> A, c.2986G > A, ss2019324576) within COL2A1 on bovine chromosome (BTA) 5. Sanger sequencing confirmed the ss2019324576 variant in the affected calves and sperm of Energy P. This mutation is located within the collagen triple helix repeat and causes an exchange of glycine to serine (p.996G > S) in COL2A1. This private single nucleotide variant (SNV) was present as a gonadal mosaic in sperm of the bull. All affected calves were in a heterozygous state whereas normal half-siblings and all dams of the progeny from Energy P were missing this SNV. Validation in polled Holstein bulls and normal Holstein calves randomly sampled from several herds and from the LuFG Ruthe confirmed this SNV as private. Conclusions: The identified spontaneous missense mutation within COL2A1 is most likely the cause of lethal chondrodysplasia in the progeny of Energy P through a dominant negative effect. This example suggests that it would be beneficial to conduct whole genome sequencing of sperm from bulls widely used in artificial insemination in order to detect germline mosaicism.
CITATION STYLE
Reinartz, S., Mohwinkel, H., Sürie, C., Hellige, M., Feige, K., Eikelberg, D., … Distl, O. (2017). Germline mutation within COL2A1 associated with lethal chondrodysplasia in a polled Holstein family. BMC Genomics, 18(1). https://doi.org/10.1186/s12864-017-4153-0
Mendeley helps you to discover research relevant for your work.