We present a set of observations on meltwater meandering rivulets on ice and compare them (qualitatively and quantitatively) to morphologies commonly found in meandering channels in different media. The observations include data from planned centimeter-scale experiments and from incidental self-formed millimeter-scale rivulets. Our data show pulsed lateral migration features, undercut banks and overhangs, meander bend skewness, and meander bend cutoffs. The data also compare well with planform characteristics of alluvial meandering rivers (sinuosity, wavelength-to-width ratios, and meander bend fatness and skewness). We discuss the (ir)relevance of scale in our experiments, which, in spite of being in the laminar flow regime and likely affected by surface tension effects, are capable of shedding light into the processes driving formation and evolution of supraglacial meltwater meandering channels. Our observations suggest that sinuosity growth in meltwater meandering channels on ice is a function of flow velocity and the interplay between vertical and lateral incision driven by temperature differences between flow and ice. In the absence of recrystallization (depositional analog to alluvial rivers), bends are more likely to be downstream-skewed and channels show lower sinuosities..
CITATION STYLE
Fernández, R., & Parker, G. (2021). Laboratory observations on meltwater meandering rivulets on ice. Earth Surface Dynamics, 9(2), 253–269. https://doi.org/10.5194/esurf-9-253-2021
Mendeley helps you to discover research relevant for your work.