It is assumed by the authors of the present paper that with growing contribution of nuclear power in the production of electricity, nuclear power plants will be used to a higher degree in a manoeuvrable mode of operation rather than in the base-load mode. In other words, change of power from the nominal level to that of coverage of auxiliary loads will be becoming quite common and not so rare event as scheduled reactor shutdowns for fuel reloading or preventive works. There exist well-known problems in the use of nuclear reactors in the manoeuvrable operation mode, which include the task shared by all types of nuclear reactors. It is advisable to have a unified indicator weakly power-dependent and fairly easy to measure, which would make it possible to formulate the judgement about the nature of the transient processes within the entire power range and to assess the reactivity required for changing the power level by the preset value. Power reactivity coefficient (PRC) can be used as such indicator. Analysis was made of existing definitions and understanding of PRC in relevant references. It turned out that there is no generally accepted definition of the PRC. Based on the performed study, the following definition was suggested: the PRC is the ratio of the low reactivity introduced into the reactor to the power increment at the end of the transient process. It is assumed here that variation of reactivity is dependent on the energy released in nuclear fission but is not related to the changes of reactivity induced by feedback signals in the automatic reactor power control system.Analysis of the relationship between the PRC and temperature coefficients and technological parameters associated with the steady-state control program was performed taking the above suggested definition into account. PRC calculations were performed using the simplest model of VVER-1000 type power reactor. It was found that PRC is weakly power-dependent.The purpose of the present study is to investigate dependence of PRC on the temperature reactivity effects and on the technological parameters associated with the steady-state control program of the power unit, using the example of VVER-1000. Effects of PRC on the static and dynamic power reactor operation modes are analyzed.
CITATION STYLE
Kazansky, Y., & Slekenichs, Y. (2018). Power coefficient of reactivity: definition, interconnection with other coefficients of reactivity, evaluation of results of transients in power nuclear reactors. Nuclear Energy and Technology, 4(2), 111–118. https://doi.org/10.3897/nucet.4.30663
Mendeley helps you to discover research relevant for your work.