Development of a multifunctional microfluidic system for studies of nerve cell activity during hypoxic and anoxic conditions

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Hemoproteins usually supply cells and tissue with oxygen. A new hemoprotein mainly present in nerve cells called Neuroglobin was recently discovered. Enhanced expression of the protein has been shown to reduce hypoxic neural injury but the mechanism behind this function remains unknown. Methods enabling investigation of the protein in single functional neurons need to be developed. Here, we have studied how the electrical signaling capacity of a neuron was affected by hypoxic environments. Preliminary results show a trend of higher noise-level when a neuron is exposed to hypoxic compared to normoxic surroundings, which implies increased ion-channel activity. The setup used today shows shortages such as reduced control over the oxygen content due to leakage. Therefore, a gas-tight, multifunctional microfluidic system is under development which enables us to study influences of Neuroglobin concentrations on neuronal activity during hypoxia and anoxia. For electrophysiological recordings a patch-clamp micro pipette will be molded into the walls of the microfluidic system. A single biological cell is steered towards the pipette and attached there by means of optical tweezers. The Neuroglobin oxygen binding state will be studied using optical spectroscopy and the neuron environment will be manipulated by applying flows of varying oxygen content through the microfluidic system. This system will constitute a powerful tool in the investigation of the Neuroglobin mechanism of action. © 2009 Springer-Verlag.

Cite

CITATION STYLE

APA

Bitaraf, N., Ahmed, A., Druzin, M., & Ramser, K. (2009). Development of a multifunctional microfluidic system for studies of nerve cell activity during hypoxic and anoxic conditions. In IFMBE Proceedings (Vol. 25, pp. 176–179). Springer Verlag. https://doi.org/10.1007/978-3-642-03887-7_48

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free