Compact model of latent heat thermal storage for its integration in multi-energy systems

6Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Nowadays, flexibility through energy storage constitutes a key feature for the optimal management of energy systems. Concerning thermal energy, Latent Heat Thermal Storage (LHTS) units are characterized by a significantly higher energy density with respect to sensible storage systems. For this reason, they represent an interesting solution where limited space is available. Nevertheless, their market development is limited by engineering issues and, most importantly, by scarce knowledge about LHTS integration in existing energy systems. This study presents a new modeling approach to quickly characterize the dynamic behavior of an LHTS unit. The thermal power released or absorbed by a LHTS module is expressed only as a function of the current and the initial state of charge. The proposed model allows simulating even partial charge and discharge processes. Results are fairly accurate when compared to a 2D finite volume model, although the computational effort is considerably lower. Summarizing, the proposed model could be used to investigate optimal LHTS control strategies at the system level. In this paper, two relevant case studies are presented: (a) the reduction of the morning thermal power peak in District Heating systems; and (b) the optimal energy supply schedule in multi-energy systems.

Cite

CITATION STYLE

APA

Colangelo, A., Guelpa, E., Lanzini, A., Mancò, G., & Verda, V. (2020). Compact model of latent heat thermal storage for its integration in multi-energy systems. Applied Sciences (Switzerland), 10(24), 1–14. https://doi.org/10.3390/app10248970

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free