Formation of the Covalent Chymotrypsin·Antichymotrypsin Complex Involves No Large-scale Movement of the Enzyme

14Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

α1-Antichymotrypsin is a member of the serine proteinase inhibitor, or serpin, family that typically forms very long-lived, enzymatically inactive 1:1 complexes (denoted E*I*) with its target proteinases. Serpins share a conserved tertiary structure, in which an exposed region of amino acid residues (called the reactive center loop or RCL) acts as bait for a target proteinase. Within E*I*, the two proteins are linked covalently as a result of nucleophilic attack by Ser195 of the serine proteinase on the P1 residue within the RCL of the serpin. This species is formally similar to the acyl enzyme species normally seen as an intermediate in serpin proteinase catalysis. However, its subsequent hydrolysis is extremely slow as a result of structural changes within the enzyme leading to distortion of the active site. There is at present an ongoing debate concerning the structure of the E*I* complex; in particular, as to whether the enzyme, bound to P1, maintains its original position at the top of the serpin molecule or instead translocates across the entire length of the serpin, with concomitant insertion of RCL residues P1-P14 within β-sheet A and a large separation of the enzyme and RCL residue P1′. We report time-resolved fluorescence energy transfer and rapid mixing/quench studies that support the former model. Our results indicate that the distance between residue P1′ in α1-antichymotrypsin and the amino terminus of chymotrypsin actually decreases on conversion of the encounter complex E·I to E*I*. These results led us to formulate a comprehensive mechanism that accounted both for our results and for those of others supporting the two different E*I* structures. In this mechanism, partial insertion of the RCL, with no large perturbation of the P1′ enzyme distance, is followed by covalent acyl enzyme formation. Full insertion can subsequently take place, in a reversible fashion, with the position of equilibrium between the partially and fully inserted complexes depending on the particular serpin-proteinase pair under consideration.

Cite

CITATION STYLE

APA

O’Malley, K. M., & Cooperman, B. S. (2001). Formation of the Covalent Chymotrypsin·Antichymotrypsin Complex Involves No Large-scale Movement of the Enzyme. Journal of Biological Chemistry, 276(9), 6631–6639. https://doi.org/10.1074/jbc.M008478200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free