By viewing portfolio optimization as a cooperative game played by the assets minimizing risk for a given return, investors can compute the exact value each security adds to the common payoff of the game. This is known the Shapley value that imputes the contribution of each asset, by looking at all the possible portfolios in which securities might participate. In this paper I use the Shapley value to decompose the risk and return of optimal portfolios that result from minimizing ordinary least squares. These regression portfolios are identical to tangency portfolios obtained by maximizing the Sharpe ratio of holdings on the mean-variance efficient frontiers. The Shapley value of individual assets is computed using the statistics resulting from the regressions. The value imputation prices assets by their comprehensive contribution to portfolio risk and return. This procedure allows investors to make unbiased decisions when analyzing the inherent risk of their holdings. By running OLS regressions, the Shapley value is calculated for asset allocation using Ibbotson’s aggregate financial data for the years 1926–2019.
CITATION STYLE
Shalit, H. (2020). The Shapley value of regression portfolios. Journal of Asset Management, 21(6), 506–512. https://doi.org/10.1057/s41260-020-00175-0
Mendeley helps you to discover research relevant for your work.