Ehlers-Danlos syndrome (EDS) type I (the classical variety) is a dominantly inherited, genetically heterogeneous connective-tissue disorder. Mutations in the COL5A1 and COL5A2 genes, which encode type V collagen, have been identified in several individuals. Most mutations affect either the triple-helical domain of the protein or the expression of one COL5A1 allele. We identified a novel splice-acceptor mutation (IVS4-2A→G) in the N-propeptide-encoding region of COL5A1, in one patient with EDS type I. The outcome of this mutation was complex: In the major product, both exons 5 and 6 were skipped; other products included a small amount in which only exon 5 was skipped and an even smaller amount in which cryptic acceptor sites within exon 5 were used. All products were in frame. Pro-α1(V) chains with abnormal N-propeptides were secreted and were incorporated into extracellular matrix, and the mutation resulted in dramatic alterations in collagen fibril structure. The two-exon skip occurred in transcripts in which intron 5 was removed rapidly relative to introns 4 and 6, leaving a large (270 nt) composite exon that can be skipped in its entirety. The transcripts in which only exon 5 was skipped were derived from those in which intron 6 was removed prior to intron 5. The use of cryptic acceptor sites in exon 5 occurred in transcripts in which intron 4 was removed subsequent to introns 5 and 6. These findings suggest that the order of intron removal plays an important role in the outcome of splice-site mutations and provide a model that explains why multiple products derive from a mutation at a single splice site.
CITATION STYLE
Takahara, K., Schwarze, U., Imamura, Y., Hoffman, G. G., Toriello, H., Smith, L. T., … Greenspan, D. S. (2002). Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal pro-α1(V) N-propeptides and Ehlers-Danlos syndrome type I. American Journal of Human Genetics, 71(3), 451–465. https://doi.org/10.1086/342099
Mendeley helps you to discover research relevant for your work.