Solid malignancies contain sphere-forming stem-like cells that are particularly efficient in propagating tumors. Identifying agents that target these cells will advance the development of more effective therapies. Recent converging evidence shows that c-Met expression marks tumor-initiating stem-like cells and that c-Met signaling drives human glioblastoma multiforme (GBM) cell stemness in vitro. However, the degree to which tumor-propagating stem-like cells depend on c-Met signaling in histologically complex cancers remains unknown. We examined the effects of in vivo c-Met pathway inhibitor therapy on tumor-propagating stem-like cells in human GBM xenografts. Animals bearing pre-established tumor xenografts expressing activated c-Met were treated with either neutralizing anti- hepatocyte growth factor (HGF) monoclonal antibody L2G7 or with the c-Met kinase inhibitor PF2341066 (Crizotinib). c-Met pathway inhibition inhibited tumor growth, depleted tumors of sphere-forming cells, and inhibited tumor expression of stem cell markers CD133, Sox2, Nanog, and Musashi. Withdrawing c-Met pathway inhibitor therapy resulted in a substantial rebound in stem cell marker expression concurrent with tumor recurrence. Cells derived from xenografts treated with anti-HGF in vivo were depleted of tumor-propagating potential as determined by in vivo serial dilution tumor-propagating assay. Furthermore, daughter xenografts that did form were 12-fold smaller than controls. These findings show that stem-like tumor-initiating cells are dynamically regulated by c-Met signaling in vivo and that c-Met pathway inhibitors can deplete tumors of their tumor-propagating stem-like cells. © 2013 Neoplasia Press, Inc. All rights reserved.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Rath, P., Lal, B., Ajala, O., Li, Y., Xia, S., Kim, J., & Laterra, J. (2013). In vivo c-Met pathway inhibition depletes human glioma xenografts of tumor-propagating stem-like cells. Translational Oncology, 6(2), 104–111. https://doi.org/10.1593/tlo.13127