QTL-by-environment interaction in the response of maize root and shoot traits to different water regimes

37Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

Abstract

Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root systemarchitecture and plasticity to water-deficit stress is a crucial problemto improve drought adaptability. In this study, 13 root andshoot traits andgenetic plasticity were evaluated in a recombinant inbred line (RIL) population under well-watered (WW) and water stress (WS) conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype–environment interaction (GEI) in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME) and multi-trait (MT) QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI). QTLs associated with crown root angle (CRA2) and crown root length (CRL1) were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN), including 9 and 4 QTLs detectedunder WWandWSconditions, respectively. MT analysis identified14 pleiotropic QTLs for 13 traits, SNP20 (1@79.2cM) was associatedwith the length of crown root (CR), primary root (PR), and seminal root (SR) and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.

Cite

CITATION STYLE

APA

Li, P., Zhang, Y., Yin, S., Zhu, P., Pan, T., Xu, Y., … Yang, Z. (2018). QTL-by-environment interaction in the response of maize root and shoot traits to different water regimes. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00229

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free