Aging of cattail (Typha latifolia L.) pollen was studied at 24°C under conditions of 40 and 75% relative humidity (RH). The decline of viability coincides with increased leakage at imbibition; both processes develop much faster at the higher humidity condition. During aging phospholipids are deesterified and free fatty acids (FFAs) and lysophospholipids (LPLs) accumulate, again, much more rapidly at 75% RH than at 40% RH. The fatty acid composition of the remaining phospholipids hardly changes during aging, which suggests limited involvement of lipid peroxidation in the degradation process. Tests with phospholipase A2 revealed that the saturated fatty acids occur at the sn-1 position of the glycerol backbone of the phospholipids. The fatty acid composition of the LPLs is similar to that of the phospholipids from which they were formed, indicating that the deesterification occurs at random. This favors involvement of free radicals instead of phospholipases in the deesterification process. Liposome studies were carried out to characterize components in the lipid fraction that might account for the leakage associated with aging. Entrapped carboxyfluorescein leaked much more from liposomes when they were partly made up from total lipids from aged pollen than from nonaged pollen. The components causing the leakage were found in both the polar and the neutral lipid fractions. Further purification and subsequent interchanging of the FFAs and LPLs between extracts from aged and nonaged pollen revealed that in neutral lipid extracts the FFAs are entirely responsible for the leakage, whereas in the phospholipid fraction the LPLs are largely responsible for the leakage. The leakage from the liposomes is not caused by fusion. We suggest that the observed loss of viability and increased leakage during aging are due to the nonenzymic accumulation of FFAs and LPLs in the pollen membranes.
CITATION STYLE
Van Bilsen, D. G. J. L., & Hoekstra, F. A. (1993). Decreased membrane integrity in aging Typha latifolia L. pollen: Accumulation of lysolipids and free fatty acids. Plant Physiology, 101(2), 675–682. https://doi.org/10.1104/pp.101.2.675
Mendeley helps you to discover research relevant for your work.