The effects of compost on physical and chemical characteristics of soil are well-studied but impacts on soil microbiomes are poorly understood. This research tested effects of green waste compost on bacterial communities in soil infested with the plant pathogen Fusarium oxysporum. Compost was added to pathogen-infested soil and maintained in mesocosms in a greenhouse experiment and replicated growth chamber experiments. Bacteria and F. oxysporum abundance were quantified using quantitative PCR. Taxonomic and functional characteristics of bacterial communities were measured using shotgun metagenome sequencing. Compost significantly increased bacterial abundance 8 weeks after amendment in one experiment. Compost increased concentrations of chemical characteristics of soil, including phosphorus, potassium, organic matter, and pH. In all experiments, compost significantly reduced abundance of F. oxysporum and altered the taxonomic composition of soil bacterial communities. Sixteen bacterial genera were significantly increased from compost in every experiment, potentially playing a role in pathogen suppression. In all experiments, there was a consistent negative effect of compost on functions related to carbohydrate use and a positive effect on bacteria with flagella. Results from this work demonstrate that compost can reduce the abundance of soilborne plant pathogens and raise questions about the role of microbes in plant pathogen suppression.
CITATION STYLE
LeBlanc, N. R., & Harrigian, F. C. (2024). Green Waste Compost Impacts Microbial Functions Related to Carbohydrate Use and Active Dispersal in Plant Pathogen-Infested Soil. Microbial Ecology, 87(1). https://doi.org/10.1007/s00248-024-02361-8
Mendeley helps you to discover research relevant for your work.