The official method of collecting county-level GDP values in the Chinese Mainland relies mainly on administrative reporting data and suffers from high costs of time, money, and human labor. To date, a series of studies have been conducted to generate fine-grained maps of socioeconomic indicators from the easily accessed remote sensing data and achieved satisfactory results. This paper proposes a transfer learning framework that regards nightlight intensities as a proxy of economic activity degrees to estimate county-level GDP around the Chinese Mainland. In the framework, paired daytime satellite images and nightlight intensity levels were applied to train a VGG-16 architecture, and the output features at a specific layer, after dimensional reduction and statistics calculation, were fed into a simple regressor to estimate county-level GDP. We trained the model with data of 2017 and utilized it to predict county-level GDP of 2018, achieving an R-squared of 0.71. Furthermore, the results of gradient visualization confirmed the validity of the proposed framework qualitatively. To the best of our knowledge, this is the first time that county-level GDP values around the Chinese Mainland have been estimated from both daytime and nighttime remote sensing data relying on attention-augmented CNN. We believe that our work will shed light on both the evolution of fine-grained socioeconomic surveys and the application of remote sensing data in economic research.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Liu, H., He, X., Bai, Y., Liu, X., Wu, Y., Zhao, Y., & Yang, H. (2021). Nightlight as a proxy of economic indicators: Fine-grained gdp inference around mainland china via attention-augmented cnn from daytime satellite imagery. Remote Sensing, 13(11). https://doi.org/10.3390/rs13112067