The aggregation of ataxin-3 is associated with spinocerebellar ataxia type 3, which is characterized by the formation of intraneuronal aggregates. However, the mechanism of aggregation is currently not well understood. Ataxin-3 consists of a folded Josephin domain followed by two ubiquitin-interacting motifs and a C-terminal polyglutamine tract, which in the non-pathological form is less than 45 residues in length. We demonstrate that ataxin-3 with 64 glutamines (at(Q64)) undergoes a two-stage aggregation. The first stage involves formation of SDS-soluble aggregates, and the second stage results in formation of SDS-insoluble aggregates via the poly(Q) region. Both these first and second stage aggregates display typical amyloid-like characteristics. Under the same conditions at(Q15) and at(QHQ) undergo a single step aggregation event resulting in SDS-soluble aggregates, which does not involve the polyglutamine tract. These aggregates do not convert to the SDS-insoluble form. These observations demonstrate that ataxin-3 has an inherent capacity to aggregate through its non-polyglutamine domains. However, the presence of a pathological length polyglutamine tract introduces an additional step resulting in formation of a highly stable amyloid-like aggregate. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Ellisdon, A. M., Thomas, B., & Bottomley, S. P. (2006). The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. Journal of Biological Chemistry, 281(25), 16888–16896. https://doi.org/10.1074/jbc.M601470200
Mendeley helps you to discover research relevant for your work.