Novel ((E)-((2-hydroxynaphthalen-1-yl)methylidene)amino)urea ligand and its Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes: Synthesis, characterization, molecular docking, and anti-cancer activities

0Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The ligand ((E)-((2-hydroxynaphthalen-1-yl)methylidene)amino)urea (HL) and its Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes have been synthesized and characterized by conventional spectroscopic methods, elemental analysis, molar conductivity, and thermal analysis. The complexes show that the ligand disposes of as tridentate anionic (ONO) donor via deprotonated (OH)ring, (C = N)azomethine, and (C = O) functions with a ratio of metal:ligand (1:2) with Mn(II) and Co(II) ions. While, in Ni(II), Cu(II), and Zn(II) complexes, HL acts as monobasic bidentate (NO) donor ligates through deprotonated (OH)ring and (C = N)azomethine with metal:ligand of 1:2. Zn(II) complex adopts tetrahedral and other complexes adopt octahedral geometry. DFT in the material studio package validates the geometry of ligand and metal complexes by measuring bond lengths and angles, HOMO, and LUMO. The thermodynamic and kinetic parameters were estimated from TGA-DTG curves. These complexes provide better activities against human prostatic cell line PC-3 than free ligand which is further verified by molecular docking studies.

Cite

CITATION STYLE

APA

Al-Radadi, N. S., El-Gamil, M. M., Hussien, M. A., & Salama, H. M. (2023). Novel ((E)-((2-hydroxynaphthalen-1-yl)methylidene)amino)urea ligand and its Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes: Synthesis, characterization, molecular docking, and anti-cancer activities. Inorganic and Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2023.2188457

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free