Co-delivery of sorafenib and crizotinib encapsulated with polymeric nanoparticles for the treatment of in vivo lung cancer animal model

14Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To treat various cancers, including lung cancer, chemotherapy requires the systematic administering of chemotherapy. The chemotherapeutic effectiveness of anticancer drugs has been enhanced by polymer nanoparticles (NPs), according to new findings. As an outcome, we have developed biodegradable triblock poly(ethylene glycol)–poly(ε-caprolactone)–poly(ethylene glycol) (PEG–PCL–PEG, PECE) polymeric NPs for the co-delivery of sorafenib (SORA) and crizotinib (CRIZ) and investigated their effect on lung cancer by in vitro and in vivo. There is little polydispersity in the SORA–CRIZ@NPs, an average size of 30.45 ± 2.89 nm range. A steady release of SORA and CRIZ was observed, with no burst impact. The apoptosis rate of SORA–CRIZ@NPs was greater than that of free drugs in 4T1 and A549 cells. Further, in vitro cytotoxicity of the polymeric NPs loaded with potential anticancer drugs was more quickly absorbed by cancer cells. On the other hand, compared to free drugs (SORA + CRIZ), SORA + CRIZ@NPs showed a substantial reduction of tumor development, longer survival rate, and a lowered side effect when delivered intravenously to nude mice xenograft model with 4T1 cancer cells. TUNEL positivity was also increased in tumor cells treated with SORA–CRIZ@NPs, demonstrating the therapeutic effectiveness. SORA–CRIZ@NPs might be used to treat lung cancer soon, based on the results from our new findings.

Cite

CITATION STYLE

APA

Zhong, T., Liu, X., Li, H., & Zhang, J. (2021). Co-delivery of sorafenib and crizotinib encapsulated with polymeric nanoparticles for the treatment of in vivo lung cancer animal model. Drug Delivery, 28(1), 2108–2118. https://doi.org/10.1080/10717544.2021.1979129

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free