Smallmouth bass (Micropterus dolomieu) predation on subyearling fall Chinook salmon (Oncorhynchus tshawytscha) was examined in the Snake River (USA) to identify seasonal and habitat-related changes in bass diets, and associated subyearling consumption and loss in various riverine and impounded reaches. Smallmouth bass diets reflected opportunistic foraging that at times showed predation on subyearlings is influenced by the consumption of other prey such as crayfish, sand roller (Percopsis transmontana), and smaller invertebrates. Estimated loss of subyearlings was influenced by bass abundance and consumption rates. The highest bass abundances (> 1,000 bass/river kilometer) were observed in the upper reach of Hells Canyon early in April and May, and in Lower Granite Reservoir. Peak consumption rates of subyearlings (≥ 0.12 subyearlings/bass/day) occurred in the upper reach of Hells Canyon during May and in most reservoir reaches in June. Predation losses accumulated evenly along the river continuum from riverine to reservoir habitats. We estimated that 869,371 subyearlings could be lost to smallmouth bass predation between riverine production areas and Lower Granite Dam in a given year. To provide a context for this estimated loss, we provide an illustration of its potential effect on the adult population. Assuming no juvenile mortality occurred downstream of the dam and depending on smolt-to-adult return rates, this represented up to 3.9–16.0% of the potential adult run that could have returned to Lower Granite Dam had no subyearling predation by smallmouth bass occurred upstream of the dam. Although this study was limited by a number of assumptions and constraints, it does provide an illustration of how predation affects juvenile and adult salmon loss over a broad, changing river landscape.
CITATION STYLE
Tiffan, K. F., Erhardt, J. M., Hemingway, R. J., Bickford, B. K., & Rhodes, T. N. (2020). Impact of smallmouth bass predation on subyearling fall Chinook salmon over a broad river continuum. Environmental Biology of Fishes, 103(10), 1231–1246. https://doi.org/10.1007/s10641-020-01016-0
Mendeley helps you to discover research relevant for your work.