Tree species’ influences on soil carbon dynamics revealed with natural abundance 13C techniques

8Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background and aims: The carbon (C) sequestration potential of land-use practices is increasingly important. Trees sequester atmospheric C into biomass and above and belowground litter but may also prime the decomposition of soil organic matter (SOM). We compared the influence of Acer pseudoplatanus (Sycamore) and Larix x. europlepsis (Hybrid Larch) on soil C decomposition. Methods: We used natural abundance 13C to partition soil-surface CO2 efflux into root and SOM sources. CO2 was sampled from incubated root-free soil and from live tree roots using in-situ chambers. Combined surface efflux δ13CO2 was measured using dynamic chambers and cavity-ringdown spectroscopy. Results: Under Sycamore, CO2 emissions were dominated (80–90 %) by root respiration. SOM contributed 10–20 % with a mean residence time of centuries. Under Larch, 24–33 % of total CO2 efflux was root respiration, the remainder originating from an SOM pool with a turnover time of decades. Total soil C stocks were similar between the two plot types. Root-respired δ13CO2 was consistently different by c. 2 ‰ between the species. Conclusions: The decomposition rate of soil C and its mean residence time are markedly different under the two tree species. Species differences in root-respired δ13CO2 may reflect plant C allocation or respiratory fractionation.

Cite

CITATION STYLE

APA

Snell, H. S. K., Robinson, D., & Midwood, A. J. (2016). Tree species’ influences on soil carbon dynamics revealed with natural abundance 13C techniques. Plant and Soil, 400(1–2), 285–296. https://doi.org/10.1007/s11104-015-2731-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free