Research on community detection of online social network members based on the sparse subspace clustering approach

4Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

The text data of the social network platforms take the form of short texts, and the massive text data have high-dimensional and sparse characteristics, which does not make the traditional clustering algorithm perform well. In this paper, a new community detection method based on the sparse subspace clustering (SSC) algorithm is proposed to deal with the problem of sparsity and the high-dimensional characteristic of short texts in online social networks. The main ideal is as follows. First, the structured data including users' attributions and user behavior and unstructured data such as user reviews are used to construct the vector space for the network. And the similarity of the feature words is calculated by the location relation of the feature words in the synonym word forest. Then, the dimensions of data are deduced based on the principal component analysis in order to improve the clustering accuracy. Further, a new community detection method of social network members based on the SSC is proposed. Finally, experiments on several data sets are performed and compared with the K-means clustering algorithm. Experimental results show that proper dimension reduction for high dimensional data can improve the clustering accuracy and efficiency of the SSC approach. The proposed method can achieve suitable community partition effect on online social network data sets.

Cite

CITATION STYLE

APA

Zhou, Z., & Tian, B. (2019). Research on community detection of online social network members based on the sparse subspace clustering approach. Future Internet, 11(12). https://doi.org/10.3390/FI11120254

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free