Recently, the ‘drive-by’ or vehicle scanning technique has attracted increasing attention over the last decade for the purpose of bridge health monitoring. The feasibility of this technique has been demonstrated by many field tests. In comparison to conventional bridge SHM, the concept of the drive-by bridge technique shows many advantages in terms of efficiency, economy, convenience, and mobility. It has been verified that wavelet transforms can successfully identify bridge damage and its location using the responses of a moving vehicle. However, the validity of this method is challenged by road roughness. This paper proposes a wavelet-based approach to detect bridge defects using wavelet energy. In addition, a damage index based on component wavelet energy is developed to localize the damage. A numerical simulation is modeled to verify the feasibility of the proposed approach, and the result shows that the proposed approach performs well even when considering road roughness in the vehicle and bridge interaction. Moreover, the effects of road surface profile, vehicle velocity, vehicle mass, noise signal, and different damage severity on the proposed approach are investigated. The proposed approach shows a great potential application in bridge health monitoring using indirect measurements from a moving vehicle.
CITATION STYLE
Tan, C., Zhao, H., Uddin, N., & Yan, B. (2022). A Fast Wavelet-Based Bridge Condition Assessment Approach Using Only Moving Vehicle Measurements. Applied Sciences (Switzerland), 12(21). https://doi.org/10.3390/app122111277
Mendeley helps you to discover research relevant for your work.