Zinc isotopic evidence for recycled carbonate in the deep mantle

37Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Carbonate, the major carbon reservoir on Earth’s surface, can enter into the mantle by subduction. However, evidence for recycled surficial carbonates in the deep mantle is still scarce. Ocean island basalts from Cook-Austral islands and St. Helena Island, widely called HIMU basalts because of their high μ = 238U/204Pb sources, are thought to be fed by mantle plumes originating in the lower mantle. Here we report exceptionally high δ66Zn values (δ66Zn = 0.38 ± 0.03‰) of these HIMU lavas relative to most published data for oceanic basalts (δ66Zn = 0.31 ± 0.10‰), which requires a source contributed by isotopically heavy recycled surficial carbonates. During subduction of the oceanic lithosphere, melting of mixed surficial carbonates and basaltic crust in the deep mantle generates carbonatite melts, which metasomatizes the nearby mantle and the resultant carbonated mantle ultimately evolves into a high-δ66Zn HIMU source. High-δ66Zn signatures of HIMU basalts, therefore, demonstrate that carbonates can be transported into Earth’s deep mantle.

Cite

CITATION STYLE

APA

Zhang, X. Y., Chen, L. H., Wang, X. J., Hanyu, T., Hofmann, A. W., Komiya, T., … Li, W. Q. (2022). Zinc isotopic evidence for recycled carbonate in the deep mantle. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33789-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free