The direct flight muscles (DFMs) of Drosophila allow for the fine control of wing position necessary for flight. In DWnt-2 mutant flies, certain DFMs are either missing or fail to attach to the correct epithelial sites. Using a temperature-sensitive allele, we show that DWnt-2 activity is required only during pupation for correct DFM patterning. DWnt-2 is expressed in the epithelium of the wing hinge primordium during pupation. This expression is in the vicinity of the developing DFMs, as revealed by expression of the muscle founder cell-specific gene dumbfounded in DFM precursors. The observation that a gene necessary for embryonic founder cell function is expressed in the DFM precursors suggests that these cells may have a similar founder cell role. Although the expression pattern of DWnt-2 suggests that it could influence epithelial cells to differentiate into attachment sites for muscle, the expression of stripe, a transcription factor necessary for epithelial cells to adopt an attachment cell fate, is unaltered in the mutant. Ectopic expression of DWnt-2 in the wing hinge during pupation can also create defects in muscle patterning without alterations in stripe expression. We conclude that DWnt-2 promotes the correct patterning of DFMs through a mechanism that is independent of the attachment site differentiation initiated by stripe. © 2002 Elsevier Science (USA).
CITATION STYLE
Kozopas, K. M., & Nusse, R. (2002). Direct flight muscles in drosophila develop from cells with characteristics of founders and depend on DWnt-2 for their correct patterning. Developmental Biology, 243(2), 312–325. https://doi.org/10.1006/dbio.2002.0572
Mendeley helps you to discover research relevant for your work.