Motor imagery represents the ability to simulate anticipated movements mentally prior to their actual execution and has been proposed as a tool to assess both individuals’ perception of task difficulty as well as their perception of their own abilities. People with multiple sclerosis (pwMS) often present with motor and cognitive dysfunction, which may negatively affect motor imagery. In this cross-sectional study, we explored differences in motor imagery of walking performance between pwMS (n = 20, age = 57.1 (SD = 8.6) years, 55% female) and age-and sex-matched healthy controls (n = 20, age = 58.1 (SD = 7.0) years, 60% female). Participants underwent mental chronometry assessments, a subset of motor imagery, which evaluated the difference between imagined and actual walking times across four walking tasks of increasing difficulty (i.e., large/narrow-width walkway with/without obstacles). Raw and absolute mental chronometry (A-MC) measures were recorded in single-(ST) and dual-task (DT) conditions. In ST conditions, pwMS had higher A-MC scores across all walking conditions (p ≤ 0.031, η2 ≥ 0.119), indicating lower motor imagery ability compared to healthy controls. During DT, all participants tended to underestimate their walking ability (3.38 ± 6.72 to 5.63 ± 9.17 s). However, after physical practice, pwMS were less able to adjust their imagined walking performance compared to healthy controls. In pwMS, A-MC scores were correlated with measures of balance confidence (ρ = −0.629, p < 0.01) and the self-reported expanded disability status scale (ρ = 0.747, p < 0.01). While the current study revealed that pwMS have lower motor imagery of walking performance compared to healthy individuals, further work is necessary to examine how the disassociation between mental chronometry and actual performance relates to quality of life and well-being.
CITATION STYLE
Wajda, D. A., Zanotto, T., & Sosnoff, J. J. (2021). Motor imagery of walking in people living with and without multiple sclerosis: A cross-sectional comparison of mental chronometry. Brain Sciences, 11(9). https://doi.org/10.3390/brainsci11091131
Mendeley helps you to discover research relevant for your work.