Effect of carbon support, capping agent amount, and PD NPS size for bio-adipic acid production from muconic acid and sodium muconate

16Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

The effect of support, stabilizing agent, and Pd nanoparticles (NPs) size was studied for sodium muconate and t,t-muconic acid hydrogenation to bio-adipic acid. Three different activated carbons (AC) were used (Norit, KB, and G60) and carbon morphology did not affect the substrate conversion, but it greatly influenced the adipic acid yield. 1% Pd/KB Darco catalyst, which has the highest surface area and Pd surface exposure, and the smallest NPs size displayed the highest activity. Furthermore, the effect of the amount of the protective agent was studied varying metal/protective agent weight ratios in the range of 1/0.00–1/1.20, using KB as the chosen support. For sodium muconate reduction 1% Pd/KB_1.2 catalyst gave the best results in terms of activity (0.73 s−1), conversion, and adipic acid yield (94.8%), while for t,t-muconic acid hydrogenation the best activity result (0.85 s−1) was obtained with 1% Pd/KB_0.0 catalyst. Correlating the results obtained from XPS and TEM analyses with catalytic results, we found that the amount of PVA (polyvinyl alcohol) influences mean Pd NPs size, Pd(0)/Pd(II) ratio, and Pd surface exposure. Pd(0)/Pd(II) ratio and Pd NPs size affected adipic acid yield and activity during sodium muconate hydrogenation, respectively, while adipic acid yield was related by exposed Pd amount during t,t-muconic acid hydrogenation. The synthesized catalysts showed higher activity than commercial 5% Pd/AC.

Cite

CITATION STYLE

APA

Capelli, S., Motta, D., Evangelisti, C., Dimitratos, N., Prati, L., Pirola, C., & Villa, A. (2020). Effect of carbon support, capping agent amount, and PD NPS size for bio-adipic acid production from muconic acid and sodium muconate. Nanomaterials, 10(3). https://doi.org/10.3390/nano10030505

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free