RNA sequencing reveals the complex regulatory network in the maize kernel

229Citations
Citations of this article
209Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

RNA sequencing can simultaneously identify exonic polymorphisms and quantitate gene expression. Here we report RNA sequencing of developing maize kernels from 368 inbred lines producing 25.8 billion reads and 3.6 million single-nucleotide polymorphisms. Both the MaizeSNP50 BeadChip and the Sequenom MassArray iPLEX platforms confirm a subset of high-quality SNPs. Of these SNPs, we have mapped 931,484 to gene regions with a mean density of 40.3 SNPs per gene. The genome-wide association study identifies 16,408 expression quantitative trait loci. A two-step approach defines 95.1% of the eQTLs to a 10-kb region, and 67.7% of them include a single gene. The establishment of relationships between eQTLs and their targets reveals a large-scale gene regulatory network, which include the regulation of 31 zein and 16 key kernel genes. These results contribute to our understanding of kernel development and to the improvement of maize yield and nutritional quality. © 2013 Macmillan Publishers Limited.

Cite

CITATION STYLE

APA

Fu, J., Cheng, Y., Linghu, J., Yang, X., Kang, L., Zhang, Z., … Wang, G. (2013). RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 4. https://doi.org/10.1038/ncomms3832

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free