Recent advances in high-throughput nanomaterial manufacturing for hybrid flexible bioelectronics

16Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Hybrid flexible bioelectronic systems refer to integrated soft biosensing platforms with tremendous clinical impact. In this new paradigm, electrical systems can stretch and deform with the skin while previously hidden physiological signals can be continuously recorded. However, hybrid flexible bioelectronics will not receive wide clinical adoption until these systems can be manufactured at industrial scales cost-effectively. Therefore, new manufacturing approaches must be dis-covered and studied under the same innovative spirit that led to the adoption of novel materials and soft structures. Recent works have taken mature manufacturing approaches from the graphics industry, such as gravure, flexography, screen, and inkjet printing, and applied them to fully printed bioelectronics. These applications require the cohesive study of many disparate parts. For instance, nanomaterials with optimal properties for each specific application must be dispersed in printable inks with rheology suited to each printing method. This review summarizes recent advances in printing technologies, key nanomaterials, and applications of the manufactured hybrid bioelectronics. We also discuss the existing challenges of the available nanomanufacturing methods and the areas that need immediate technological improvements.

Cite

CITATION STYLE

APA

Zavanelli, N., Kim, J., & Yeo, W. H. (2021, June 1). Recent advances in high-throughput nanomaterial manufacturing for hybrid flexible bioelectronics. Materials. MDPI AG. https://doi.org/10.3390/ma14112973

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free