Interface-induced nonswitchable domains in ferroelectric thin films

133Citations
Citations of this article
168Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Engineering domains in ferroelectric thin films is crucial for realizing technological applications including non-volatile data storage and solar energy harvesting. Size and shape of domains strongly depend on the electrical and mechanical boundary conditions. Here we report the origin of nonswitchable polarization under external bias that leads to energetically unfavourable head-to-head domain walls in as-grown epitaxial PbZr0.2Ti0.8O3 thin films. By mapping electrostatic potentials and electric fields using off-axis electron holography and electron-beam-induced current with in situ electrical biasing in a transmission electron microscope, we show that electronic band bending across film/substrate interfaces locks local polarization direction and further produces unidirectional biasing fields, inducing nonswitchable domains near the interface. Presence of oxygen vacancies near the film surface, as revealed by electron-energy loss spectroscopy, stabilizes the charged domain walls. The formation of charged domain walls and nonswitchable domains reported in this study can be an origin for imprint and retention loss in ferroelectric thin films.

Cite

CITATION STYLE

APA

Han, M. G., Marshall, M. S. J., Wu, L., Schofield, M. A., Aoki, T., Twesten, R., … Zhu, Y. (2014). Interface-induced nonswitchable domains in ferroelectric thin films. Nature Communications, 5. https://doi.org/10.1038/ncomms5693

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free