In Brassica oleracea, heterosis is the most efficient tool providing impetus to hybrid vegetable industry. In this context, we presented the first report on identifying superior heterotic crosses for yield and commercial traits in cauliflower involving cytoplasmic male sterile (CMS) and doubled haploid (DH) lines as parents. We studied the suitability of genomic-SSRs and EST-SSRs based genetic distance (GD) and agronomic trait based phenotypic distance (PD) for predicting heterosis in F1 hybrids using CMS and DH based parents. 120 F1 hybrids derived from 20Ogura based CMS lines and 6 DH based testers were evaluated for 16 agronomic traits along with the 26 parental lines and 4 commercial standard checks. The genomic-SSRs and EST-SSRs based genetic structure analysis grouped the 26 parental lines into 4 distinct clusters. The CMS lines Ogu118-6A, Ogu33A, Ogu34-1A were good general combiner for developing early maturity hybrids. The SCA effects were significantly associated with heterosis suggesting non-additive gene effects for the heterotic response of hybrids. Less than unity value of σ2A/D coupled with σ2gca/σ2sca indicated the predominance of non-additive gene action in the expression of studied traits. The correlation analysis of genetic distance with heterosis for commercial traits suggested that microsatellites based genetic distance estimates can be helpful in heterosis prediction to some extent.
CITATION STYLE
Singh, S., Dey, S. S., Bhatia, R., Kumar, R., Sharma, K., & Behera, T. K. (2019). Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. PLoS ONE, 14(8). https://doi.org/10.1371/journal.pone.0210772
Mendeley helps you to discover research relevant for your work.