Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: Evidence from FRAP

128Citations
Citations of this article
97Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fluorescence recovery after photobleaching (FRAP) was used to study the mechanism by which fluorescent-protein-tagged movement protein (MP) of tobacco mosaic virus (TMV) is targeted to plasmodesmata (PD). The data show that fluorescence recovery in PD at the leading edge of an infection requires elements of the cortical actin/endoplasmic reticulum (ER) network and can occur in the absence of an intact microtubule (MT) cytoskeleton. Inhibitors of the actin cytoskeleton (latrunculin and cytochalasin) significantly inhibited MP targeting, while MT inhibitors (colchicine and oryzalin) did not. Application of sodium azide to infected cells implicated an active component of MP transfer to PD. Treatment of cells with Brefeldin A (BFA) at a concentration that caused reabsorption of the Golgi bodies into the ER (precluding secretion of viral MP) had no effect on MP targeting, while disruption of the cortical ER with higher concentrations of BFA caused significant inhibition. Our results support a model of TMV MP function in which targeting of MP to PD during infection is mediated by the actin/ER network. © 2006 The Authors Journal compilation.

Cite

CITATION STYLE

APA

Wright, K. M., Wood, N. T., Roberts, A. G., Chapman, S., Boevink, P., Mackenzie, K. M., & Oparka, K. J. (2007). Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: Evidence from FRAP. Traffic, 8(1), 21–31. https://doi.org/10.1111/j.1600-0854.2006.00510.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free