Background: Necrotizing autoimmune myopathy (NAM) is pathologically characterized by myofiber necrosis and regeneration with paucity or absence of inflammatory cells in muscle biopsy. Two autoantibodies, namely anti-signal recognition particle (SRP)-antibodies and anti-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)-antibodies, are typically specific with NAM. Anti-SRP-positive NAM can be associated with cardiomyopathy which responds well to immunotherapy. Here we reported an anti-SRP-antibody and anti-MDA5-antibody NAM patient who developed severe cardiomyopathy after gaining significant improvement of myopathy and subsequently accepted heart transplantation. Case presentation: A NAM case with both positive anti-SRP and MDA-5 antibodies who gained significant improvement of the skeletal muscle weakness with immunotherapy, but 3 years later he developed severe dilated cardiomyopathy and at last received heart transplantation. Myocardial biopsy showed disarranged and atrophic myofibers, remarkable interstitial fibrosis without inflammatory infiltrates. Immunohistochemistry analysis revealed increased polyubiquitin-binding protein p62/SQSTM1 protein expression and the positive staining of cleaved-caspase 3 in a few cardiomyocytes. After the transplantation, the patient was symptom-free on oral prednisone (10 mg/day) and tacrolimus (2 mg/day). Conclusions: We described the first case of anti-SRP and anti-MAD5 positive NAM who had received heart transplantation because of cardiopathy. Though the myopathy had been clinically improved after immunotherapy, the cardiomyopathy remained progressive and lethal. The processes of dysfunctional autophagy and augmented apoptosis were putatively pathophysiological mechanisms underlying cardiac damage in anti-SRP and anti-MAD5 positive NAM.
CITATION STYLE
Ma, X., Xu, L., Li, Y., & Bu, B. (2021). Immunotherapy reversed myopathy but not cardiomyopathy in a necrotizing autoimmune myopathy patient with positive anti-SRP and MDA-5 autoantibodies. BMC Cardiovascular Disorders, 21(1). https://doi.org/10.1186/s12872-021-01900-2
Mendeley helps you to discover research relevant for your work.