Tipping bucket rain gauges (TBR) are widely used worldwide because they are simple, cheap, and have low-energy consumption. However, their main disadvantage lies in measurement errors, such as those caused by rainfall intensity (RI) variation, which results in data underestimation, especially during extreme rainfall events. This work aims to understand these types of errors, identifying some of their causes through an analysis of water behavior and its effect on the TBR mechanism when RI increases. The mechanical biases of TBR effects on data were studied using 13 years of data measured at 10 TBRs in a mountain basin, and two semi-analytical approaches based on the TBR mechanism response to RI have been proposed, validated in the laboratory, and contrasted with a simple linear regression dynamic calibration and a static calibration through a root-mean-square error analysis in two different TBR models. Two main sources of underestimation were identified: one due to the cumulative surplus during the tipping movement and the other due to the surplus water contributed by the critical drop. Moreover, a random variation, not related to RI, was also observed, and three regions in the calibration curve were identified. Proposed calibration methods have proved to be an efficient alternative for TBR calibration, reducing data error by more than 50% in contrast with traditional static calibration.
CITATION STYLE
Segovia-Cardozo, D. A., Rodríguez-Sinobas, L., Díez-Herrero, A., Zubelzu, S., & Canales-Ide, F. (2021). Understanding the mechanical biases of tipping-bucket rain gauges: A semi-analytical calibration approach. Water (Switzerland), 13(16). https://doi.org/10.3390/w13162285
Mendeley helps you to discover research relevant for your work.