Oxygen-dependent tension in vascular smooth muscle: Does the endothelium play a role?

42Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

We investigated a hypothesis that an oxygen sensor involved in hypoxia-induced relaxation of vascular smooth muscle may reside in endothelial cells. We also determined the oxygen dependence of hypoxia-induced decreases in cyclic guanosine 3',5'-monophosphate concentrations in vascular smooth muscle rings. Rings of canine femoral artery, rabbit thoracic aorta, and lamb ductus arteriosus, either with an intact endothelium or with damaged or absent endothelium, were studied using organ baths that allowed changes in P(O2) without a change in pH. Hypoxia-induced relaxations of rabbit thoracic aorta, lamb ductus arteriosus, and canine femoral artery were not dependent on an intact endothelium. The magnitude of hypoxia-induced relaxations was unchanged in rings of canine femoral artery without intact endothelium compared to rings with endothelium. Quasi-steady state organ bath P(O2)-mechanical tension relationships were unchanged in rings of canine femoral artery without endothelium over an organ P(O2) range of 200-20 mm Hg. With rabbit thoracic aorta, magnitudes of hypoxia-induced relaxations were significantly smaller in rings without endothelium. Quasi-steady state plots, where mechanical tension was given as percentage of maximal relaxation, were similar in rings either with or without intact endothelium. Cyclic guanosine 3',5'-monophosphate concentrations were shown to be oxygen-sensitive, decreasing during hypoxia-induced relaxations with a threshold P(O2) of 80-100 mm Hg with canine femoral artery, and 60-80 mm Hg with rabbit thoracic aorta rings, but this finding seems unrelated to the mechanism of hypoxia-induced relaxation.

Cite

CITATION STYLE

APA

Coburn, R. F., Eppinger, R., & Scott, D. P. (1986). Oxygen-dependent tension in vascular smooth muscle: Does the endothelium play a role? Circulation Research, 58(3), 341–347. https://doi.org/10.1161/01.RES.58.3.341

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free