Purpose: Drug-eluting stents (DES) in percutaneous coronary intervention are more effective in preventing in-stent restenosis compared with bare metal stents (BMS); however, DES may cause late stent thrombosis, which has limited its use. In this study, the functional properties of a newly developed DES (RAP/CS/HEP), in which rapamycin was abluminally-loaded onto a chitosan/heparin coating stent (CS/HEP), were investigated in large animal artery injury models. Methods: The effectiveness of BMS, RAP (the traditional version of rapamycin DES), CS/HEP and RAP/CS/HEP stents in preventing coagulation and promoting reendothelialisation was examined and compared in the porcine coronary artery models with arteriovenous shunt, high load thrombus and coronary balloon injury at day 7 and 28, respectively, after stent implantation. The re-endothelialisation on these stents was further evaluated in terms of endothelial gene expression using quantitative RT-PCR. Results: In the porcine coronary artery injury models, both RAP and RAP/CS/HEP stents were potent in reducing neointimal thickness, thus enlarging lumen area efficiently in the stented artery region compared with BMS and CS/HEP. RAP/CS/HEP stents facilitated re-endothelialisation and inhibited thrombosis more efficiently than BMS and RAP. Consistent with this, the expression of endothelial genes, such as CD31, CD34, eNOS and VEGF, was significantly elevated with RAP/CS/HEP stents compared with RAP and BMS stents. Conclusion: Abluminal coating of rapamycin onto the endothelialisation-accelerated CS/HEP stent and may prove to be an efficient treatment for tackling the late stent thrombosis associated with the traditionally circumferential RAP stent. This new RAP/CS/HEP stent system exhibits considerably improved therapeutic activity.
CITATION STYLE
Gao, J. Q., Zheng, J. P., Jin, H. G., Zhang, W. Q., Yan, P. Y., Chen, T., & Liu, Z. J. (2014). A new rapamycin-abluminally coated chitosan/heparin stent system accelerates early re-endothelialisation and improves anti-coagulant properties in porcine coronary artery models. Clinical and Investigative Medicine, 37(6), E395–E402. https://doi.org/10.25011/cim.v37i6.22244
Mendeley helps you to discover research relevant for your work.