Synthesis and characterization of a novel ruthenium(ii) trisbipyridine complex magnetic nanocomposite for the selective oxidation of phenols

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Anchoring ruthenium(ii) trisbipyridine complex [Ru(Bpy)3]2+ into a magnetic dendritic fibrous silica nanostructure produces an unprecedented strong nanocatalyst, FeNi3/DFNS/[Ru(Bpy)3]2+. Impressive oxidation of phenols to 1,4-benzoquinones catalyzed by FeNi3/DFNS/[Ru(Bpy)3]2+ is obtained in acetonitrile and water solution with molecular dioxygen as oxidant. Exclusively, apparently inert phenols such as phenol itself and mono-alkyl-substituted phenols are impressively oxidized to produce 1,4-benzoquinones through activation of the C-H bond in the position para to the carbon-oxygen bond under mild conditions. In addition, the production of industrially significant quinones that are known intermediates for vitamin combinations is investigated and studied FeNi3/DFNS/[Ru(Bpy)3]2+ magnetic nanoparticles were produced, and their properties were investigated by AFM, FTIR, XRD, TGA, SEM, TEM, and VSM.

Cite

CITATION STYLE

APA

Fei, Z., Chen, F., Zhong, M., Qiu, J., Li, W., & Sadeghzadeh, S. M. (2019). Synthesis and characterization of a novel ruthenium(ii) trisbipyridine complex magnetic nanocomposite for the selective oxidation of phenols. RSC Advances, 9(48), 28078–28088. https://doi.org/10.1039/c9ra05079e

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free