Benign epilepsy with centrotemporal spikes (BECT) is the most common childhood idiopathic focal epilepsy syndrome, which characterized with white-matter abnormalities in the rolandic cortex. Although diffusion tensor imaging research could characterize white-matter structural architecture, it cannot detect neural activity or white-matter functions. Recent studies demonstrated the functional organization of white-matter by using functional magnetic resonance imaging (fMRI), suggesting that it is feasible to investigate white-matter dysfunctions in BECT. Resting-state fMRI data were collected from 24 new-onset drug-naive (unmedicated [NMED]), 21 medicated (MED) BECT patients, and 27 healthy controls (HC). Several white-matter functional networks were obtained using a clustering analysis on voxel-by-voxel correlation profiles. Subsequently, conventional functional connectivity (FC) was calculated in four frequency sub-bands (Slow-5:0.01–0.027, Slow-4:0.027–0.073, Slow-3:0.073–0.198, and Slow-2:0.198–0.25 Hz). We also employed a functional covariance connectivity (FCC) to estimate the covariant relationship between two white-matter networks based on their correlations with multiple gray-matter regions. Compared with HC, the NMED showed increased FC and/or FCC in rolandic network (RN) and precentral/postcentral network, and decreased FC and/or FCC in dorsal frontal network, while these alterations were not observed in the MED group. Moreover, the changes exhibited frequency-specific properties. Specifically, only two alterations were shared in at least two frequency bands. Most of these alterations were observed in the frequency bands of Slow-3 and Slow-4. This study provided further support on the existence of white-matter functional networks which exhibited frequency-specific properties, and extended abnormalities of rolandic area from the perspective of white-matter dysfunction in BECT.
CITATION STYLE
Jiang, Y., Song, L., Li, X., Zhang, Y., Chen, Y., Jiang, S., … Luo, C. (2019). Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes. Human Brain Mapping, 40(10), 3113–3124. https://doi.org/10.1002/hbm.24584
Mendeley helps you to discover research relevant for your work.