Using the Wide Field Planetary Camera 2 on the Hubble Space Telescope, we have obtained a deep color-magnitude diagram in V- and I-band equivalents for more than 2000 stars in a patch of the outer disk of the Large Magellanic Cloud (LMC). Aperture photometry is feasible from these data with good signal-to-noise ratio for stars with V ≤ 25, which allows us for the first time to construct a color-magnitude diagram for LMC disk stars on the lower main sequence, extending beyond the oldest main-sequence turnoff point. We analyze the structure of the main-sequence band and overall morphology of the color-magnitude diagram to obtain a star formation history for the region. A comparison between the distribution of stars across the main-sequence band for M v ≤ 4 and a stellar population model constrains historical star formation rates within the past 3 Gyr. The stellar populations in this region sample the outer LMC disk for stars with ages of 1 Gyr or older that have had time to spatially mix. The structure of the main-sequence band requires that star formation occurred at a roughly constant rate during most of the past ≈3 Gyr. However, the distribution of subgiant stars indicate that a pronounced peak in the star formation rate likely occurred about 2 Gyr ago, prior to which the star formation rate had not been enhanced for several Gyr. Studies over timescales of more than 3 Gyr require a separation of the effects of star formation history and the chemical evolution on the LMC color-magnitude diagrams, which is difficult to achieve without additional constraints. If lower main-sequence stars in the LMC have moderate metallicities, then the age for most LMC disk stars is less than about 8 Gyr. © 1996. The American Astronomical Society. All rights reserved.
CITATION STYLE
Gallagher, J. S., Mould, J. R., de Feijter, E., Holtzman, J., Stappers, B., Watson, A., … Westphal, J. A. (1996). Main-Sequence Stars and the Star Formation History of the Outer Disk in the Large Magellanic Cloud. The Astrophysical Journal, 466, 732. https://doi.org/10.1086/177546
Mendeley helps you to discover research relevant for your work.