Many species of gekkotans possess adhesive subdigital pads that allow them to adhere to, and move on, a wide variety of surfaces. The natural surfaces exploited by these lizards may be rough, undulant and unpredictable and therefore likely provide only limited, patchy areas for adhesive contact. Here, we examine the microtopography of rock surfaces used by seven species of Rhoptropus and compare this to several rough and smooth artificial surfaces employed in previous studies of gekkotan adhesion. These data are considered in relation to the form, configuration, compliance and functional morphology of the setal fields of these species. Our results demonstrate that natural rock surfaces are rough and unpredictable at the scale of the setal arrays, with equal amounts of variation existing within and between the various types of rock surfaces examined. Such surfaces differ from smooth and rough artificial surfaces in the proportion of surface area available for attachment and the relative predictability of surface undulance. Generally, setal field characteristics of individual species are not relatable to specific substrates, but instead are configured to allow for sufficient attachment to a wide variety of unpredictable surfaces. Our findings provide insight into the evolution and microanatomy of the adhesive system of gekkotan lizards and its adaptive relationship to topographically unpredictable surfaces. © 2013 The Royal Swedish Academy of Sciences.
CITATION STYLE
Russell, A. P., & Johnson, M. K. (2014). Between a rock and a soft place: Microtopography of the locomotor substrate and the morphology of the setal fields of Namibian day geckos (Gekkota: Gekkonidae: Rhoptropus). Acta Zoologica, 95(3), 299–318. https://doi.org/10.1111/azo.12028
Mendeley helps you to discover research relevant for your work.