Optimized forecasting method for weekly influenza confirmed cases

17Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Influenza epidemic is a serious threat to the entire world, which causes thousands of death every year and can be considered as a public health emergency that needs to be more addressed and investigated. Forecasting influenza incidences or confirmed cases is very important to do the necessary policies and plans for governments and health organizations. In this paper, we present an enhanced adaptive neuro-fuzzy inference system (ANFIS) to forecast the weekly confirmed influenza cases in China and the USA using official datasets. To overcome the limitations of the original ANFIS, we use two metaheuristics, called flower pollination algorithm (FPA) and sine cosine algorithm (SCA), to enhance the prediction of the ANFIS. The proposed FPASCA-ANFIS is evaluated using two datasets collected from the CDC and WHO websites. Furthermore, it was compared to some previous state-of-the-art approaches. Experimental results confirmed that the FPASCA-ANFIS outperformed the compared methods using variant measures, including RMSRE, MAPE, MAE, and R2.

Cite

CITATION STYLE

APA

Al-Qaness, M. A. A., Ewees, A. A., Fan, H., & Elaziz, M. A. (2020). Optimized forecasting method for weekly influenza confirmed cases. International Journal of Environmental Research and Public Health, 17(10). https://doi.org/10.3390/ijerph17103510

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free