High dose of histone deacetylase inhibitors affects insulin secretory mechanism of pancreatic beta cell line

13Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

Objective. Histone deacytylase inhibitors (HDACis) inhibit the deacetylation of the lysine residue of proteins, including histones, and regulate the transcription of a variety of genes. Recently, HDACis have been used clinically as anti-cancer drugs and possible anti-diabetic drugs. Even though HDACis have been proven to protect the cytokine-induced damage of pancreatic beta cells, evidence also shows that high doses of HDACis are cytotoxic. In the present study, we, therefore, investigated the effect of HDACis on insulin secretion in a pancreatic beta cell line. Methods. Pancreatic beta cells MIN6 were treated with selected HDACis (trichostatin A, TSA; valproic acid, VPA; and sodium butyrate, NaB) in medium supplemented with 25 mM glucose and 13% heat-inactivated fetal bovine serum (FBS) for indicated time intervals. Protein expression of Pdx1 and Mafa in MIN6 cells was demonstrated by immunohistochemistry and immunocytochemistry, expression of Pdx1 and Mafa genes was measured by quantitative RT-PCR method. Insulin release from MIN6 cells and insulin cell content were estimated by ELISA kit. Superoxide production in MIN6 cells was measured using a Total ROS/Superoxide Detection System. Results. TSA, VPA, and NaB inhibited the expression of Pdx1 and Mafa genes and their products. TSA treatment led to beta cell malfunction, characterized by enhanced insulin secretion at 3 and 9 mM glucose, but impaired insulin secretion at 15 and 25 mM glucose. Thus, TSA induced dysregulation of the insulin secretion mechanism. TSA also enhanced reactive oxygen species production in pancreatic beta cells. Conclusions. Our results showed that HDACis caused failure to suppress insulin secretion at low glucose concentrations and enhance insulin secretion at high glucose concentrations. In other words, when these HDACis are used clinically, high doses of HDACis may cause hypoglycemia in the fasting state and hyperglycemia in the fed state. When using HDACis, physicians should, therefore, be aware of the capacity of these drugs to modulate the insulin secretory capacity of pancreatic beta cells.

References Powered by Scopus

The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin

477Citations
N/AReaders
Get full text

Reactive oxygen species as a signal in glucose-stimulated insulin secretion

464Citations
N/AReaders
Get full text

Vitamin D<inf>3</inf> up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function

427Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Butyrate generated by gut microbiota and its therapeutic role in metabolic syndrome

81Citations
N/AReaders
Get full text

The emerging role of hdacs: Pathology and therapeutic targets in diabetes mellitus

38Citations
N/AReaders
Get full text

Microbes: possible link between modern lifestyle transition and the rise of metabolic syndrome

33Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Yamato, E. (2018). High dose of histone deacetylase inhibitors affects insulin secretory mechanism of pancreatic beta cell line. Endocrine Regulations, 52(1), 21–26. https://doi.org/10.2478/enr-2018-0004

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

50%

Researcher 4

40%

Professor / Associate Prof. 1

10%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 6

55%

Medicine and Dentistry 3

27%

Chemical Engineering 1

9%

Sports and Recreations 1

9%

Save time finding and organizing research with Mendeley

Sign up for free