Abstract: Non-precious metal catalysts are needed for the commercialization of microbial fuel cells (MFCs). Therefore, in this work, we synthesized the cost-effective LaCoO3, LaMnO3, and LaCo0.5Mn0.5O3 perovskite-type oxide nanoparticles, as cathode catalysts, and replaced them by the platinum (Pt) cathode. The high electro-catalytic efficiency of the perovskite catalysts was determined by the linear sweep voltammetry, Tafel plot and electrochemical impedance spectroscopy analyses. The maximum power density obtained by the LaMnO3 was determined to be higher than 13.91 mW m−2, which is more than twice as high as that obtained by the carbon cloth cathode under identical conditions. Also, the maximum power density of MFC with the modified electrodes was more than twice as high as that of the pristine cathode and 5.2% lower than Pt. Therefore, the prepared perovskite-type oxide nanoparticles can be used as efficient catalysts for the oxygen reduction reaction (ORR) in a two-chamber MFCs. Graphic abstract: [Figure not available: see fulltext.]
CITATION STYLE
Nourbakhsh, F., Mohsennia, M., & Pazouki, M. (2020). Highly efficient cathode for the microbial fuel cell using LaXO3 (X = [Co, Mn, Co0.5Mn0.5]) perovskite nanoparticles as electrocatalysts. SN Applied Sciences, 2(3). https://doi.org/10.1007/s42452-020-2048-1
Mendeley helps you to discover research relevant for your work.