Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy

29Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman's rank correlation coefficients (rs) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MISPORT) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The rs values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the rs values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the rs values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MISPORT showed the highest correlations among the conventional modulation indices. For global passing rates, rs values of MISPORT were -0.420, -0.330, and -0.632, respectively, and those for local passing rates were -0.455, -0.490 and -0.502. The values of rs of contrast, variance, and MISPORT with the MLC errors were -0.863, -0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. Conclusions: The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.

Cite

CITATION STYLE

APA

Park, S. Y., Kim, I. H., Ye, S. J., Carlson, J., & Park, J. M. (2014). Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy. Medical Physics, 41(11). https://doi.org/10.1118/1.4897388

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free