AimsFemale sex and sex hormones contribute to cardiac remodelling. 17β-estradiol (E2) is involved in the modulation of extracellular matrix composition and function. Here, we analysed the effect of E2 on matrix metalloproteinase (MMP)-2 gene expression and studied the underlying molecular mechanisms in rat cardiac fibroblasts and in a human fibroblast cell line.Methods and resultsIn adult rat cardiac fibroblasts, E2 significantly decreased MMP-2 gene expression in an estrogen receptor (ER)-dependent manner. Transient transfection experiments of human MMP-2 (hMMP-2) promoter deletion constructs in a human fibroblast cell line revealed a regulatory region between-324 and-260 bp that is involved in E2/ER-mediated repression of hMMP-2 gene transcription. Electrophoretic mobility shift assays (EMSA) and supershift analysis demonstrated the binding of transcription factor Elk-1 within this promoter region. Elk-1 was phosphorylated by E2 via the mitogen-activated protein kinase (MAPK) signalling pathway as shown by western blotting. Treatment of cells with the MAPK inhibitor PD98059 blocked the E2-dependent repression of hMMP-2 promoter activity as well as the endogenous MMP-2 mRNA levels in both human fibroblast cells and rat cardiac fibroblasts.ConclusionE2 inhibits MMP-2 expression via the ER and the MAPK pathway in rat cardiac fibroblasts and in a human fibroblast cell line. These mechanisms may contribute to sex-specific differences in fibrotic processes that are observed in human heart and other diseases.
CITATION STYLE
Mahmoodzadeh, S., Dworatzek, E., Fritschka, S., Pham, T. H., & Regitz-Zagrosek, V. (2010). 17β-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovascular Research, 85(4), 719–728. https://doi.org/10.1093/cvr/cvp350
Mendeley helps you to discover research relevant for your work.