Bullvalene C10H10 and its analogs semibullvalene C8H8, barbaralane C9H10, and 9-Borabarbaralane C8BH9 are prototypical fluxional molecules with rapid Cope rearrangements at finite temperatures. Detailed bonding analyses performed in this work reveal the existence of two fluxional π-bonds (2 2c-2e π → 2 3c-2e π → 2 2c-2e π) and one fluxional σ-bond (1 2c-2e σ → 1 4c-2e σ → 1 2c-2e σ) in their ground states and transition states, unveiling the universal π + σ double fluxional bonding nature of these fluctuating cage-like species. The highest occupied natural bond orbitals (HONBOs) turn out to be typical fluxional bonds dominating the dynamics of the systems. The 13C-NMR and 1H-NMR shielding tensors and chemical shifts of the model compound C8BH9 are computationally predicted to facilitate future experiments.
CITATION STYLE
Ma, Y. Y., Yan, M., Li, H. R., Wu, Y. B., Tian, X. X., Lu, H. G., & Li, S. D. (2019). Probing the Fluxional Bonding Nature of Rapid Cope rearrangements in Bullvalene C10H10 and Its Analogs C8H8, C9H10, and C8BH9. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-53488-5
Mendeley helps you to discover research relevant for your work.