A feed-forward circuit of endogenous PGC-1α and estrogen related receptor α regulates the neuronal electron transport chain

3Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a central regulator of cellular and mitochondrial metabolism. Cellular bioenergetics are critically important in "energy-guzzling" neurons, but the components and wiring of the transcriptional circuit through which PGC-1α regulates the neuronal electron transport chain have not been established. This information may be vital for restoring neuronal bioenergetics gene expression that is compromised during incipient Parkinson's neuropathology and in aging-dependent brain diseases. Here we delineate a neuronal transcriptional circuit controlled by endogenous PGC-1α. We show that a feed-forward circuit of endogenous neuronal PGC-1α and the orphan nuclear estrogen-related receptor α (ERRα) activates the nuclear-encoded mitochondrial electron transport chain. PGC-1α not only trans-activated expression of ERRα, but also coactivated ERRα target genes in complexes I, II, IV, and V of the neuronal electron transport chain via association with evolutionary conserved ERRα promoter binding motifs. Chemical activation of this transcriptional program induced transcription of the neuronal electron transport chain. These data highlight a neuronal transcriptional circuit regulated by PGC-1α that can be therapeutically targeted for Parkinson's and other neurodegenerative diseases.

Cite

CITATION STYLE

APA

Bakshi, R., Mittal, S., Liao, Z., & Scherzer, C. R. (2016). A feed-forward circuit of endogenous PGC-1α and estrogen related receptor α regulates the neuronal electron transport chain. Parkinson’s Disease, 2016. https://doi.org/10.1155/2016/2405176

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free