Multitemporal very-high-resolution (VHR) satellite images are used as core data in the field of remote sensing because they express the topography and features of the region of interest in detail. However, geometric misalignment and radiometric dissimilarity occur when acquiring multitemporal VHR satellite images owing to external environmental factors, and these errors cause various inaccuracies, thereby hindering the effective use of multitemporal VHR satellite images. Such errors can be minimized by applying preprocessing methods such as image registration and relative radiometric normalization (RRN). However, as the data used in image registration and RRN differ, data consistency and computational efficiency are impaired, particularly when processing large amounts of data, such as a large volume of multitemporal VHR satellite images. To resolve these issues, we proposed an integrated preprocessing method by extracting pseudo-invariant features (PIFs), used for RRN, based on the conjugate points (CPs) extracted for image registration. To this end, the image registration was performed using CPs extracted using the speeded-up robust feature algorithm. Then, PIFs were extracted based on the CPs by removing vegetation areas followed by application of the region growing algorithm. Experiments were conducted on two sites constructed under different acquisition conditions to confirm the robustness of the proposed method. Various analyses based on visual and quantitative evaluation of the experimental results were performed from geometric and radiometric perspectives. The results evidence the successful integration of the image registration and RRN preprocessing steps by achieving a reasonable and stable performance.
CITATION STYLE
Kim, T., & Han, Y. (2021). Integrated preprocessing of multitemporal very-high-resolution satellite images via conjugate points-based pseudo-invariant feature extraction. Remote Sensing, 13(19). https://doi.org/10.3390/rs13193990
Mendeley helps you to discover research relevant for your work.