A washing ejector is a pre-treatment technology used to remediate contaminated soil by separating fine particles. The washing ejector developed in this study is a device that utilizes fast liquid jets to disperse soil aggregates by cavitation flow. The cavitation phenomenon is affected by the Bernoulli principle, and the liquid pressure decreases with the increase in kinetic energy. The cavitating flow of the fluid through the Ventrui nozzle can remove surface functional groups and discrete particles. The main methodology involves the removal of small particles bound to coarse particles and the dispersion of soil aggregates. Particle collisions occur on the surface soil, such as the metal phase that is weakly bound to silicate minerals. It was observed that the dispersed soil affected the binding of toxic heavy metals and the mineralogical characteristics of the soil. The quantity of oxides, organic matter, and clay minerals affected the properties of the soil. An almost 40–60% removal efficiency of total metals (As, Zn, and Pb) was obtained from the contaminated soils. After treatment by a washing ejector, the volume of fine particles was reduced by 28–47%. When the contaminants are associated with particulates, separation using a washing ejector can be more effective. Therefore, physical separation improves the removal efficiency of heavy metals from soil aggregates.
CITATION STYLE
Cho, K., Kim, H., Purev, O., Choi, N., & Lee, J. (2022). Physical separation of contaminated soil using a washing ejector based on hydrodynamic cavitation. Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010252
Mendeley helps you to discover research relevant for your work.