Background: To establish and validate a radiomics-based model for staging liver fibrosis at contrast-enhanced CT images. Materials and methods: This retrospective study developed two radiomics-based models (R-score: radiomics signature; R-fibrosis: integrate radiomic and serum variables) in a training cohort of 332 patients (median age, 59 years; interquartile range, 51–67 years; 256 men) with biopsy-proven liver fibrosis who underwent contrast-enhanced CT between January 2017 and December 2020. Radiomic features were extracted from non-contrast, arterial and portal phase CT images and selected using the least absolute shrinkage and selection operator (LASSO) logistic regression to differentiate stage F3–F4 from stage F0–F2. Optimal cutoffs to diagnose significant fibrosis (stage F2–F4), advanced fibrosis (stage F3–F4) and cirrhosis (stage F4) were determined by receiver operating characteristic curve analysis. Diagnostic performance was evaluated by area under the curve, Obuchowski index, calibrations and decision curve analysis. An internal validation was conducted in 111 randomly assigned patients (median age, 58 years; interquartile range, 49–66 years; 89 men). Results: In the validation cohort, R-score and R-fibrosis (Obuchowski index, 0.843 and 0.846, respectively) significantly outperformed aspartate transaminase-to-platelet ratio (APRI) (Obuchowski index, 0.651; p
CITATION STYLE
Wang, J., Tang, S., Mao, Y., Wu, J., Xu, S., Yue, Q., … Yin, Y. (2022). Radiomics analysis of contrast-enhanced CT for staging liver fibrosis: an update for image biomarker. Hepatology International, 16(3), 627–639. https://doi.org/10.1007/s12072-022-10326-7
Mendeley helps you to discover research relevant for your work.