Pemenuhan kebutuhan stok persediaan barang merupakan salah satu dari pilar utama proses bisnis yang rutin dilakukan pelaku bisnis secara umum. Peluang akan terjadinya kesalahan perhitungan yang dilakukan secara konvensional tanpa adanya sebuah analisis mendalam yang menyebabkan tidak akuratnya penentuan jumlah persediaan yang harus dipenuhi. Hasil penelitian menyajikan sebuah solusi dengan pendekatan Data Mining menggunakan teknik aturan asosiasi (association rule). Pendekatan data mining dibangun dengan menggunakan sebuah kerangka kerja pupuler data mining CRoss Industry Standard Process for Data Mining (CRISP-DM) yang dikerjakan dalam 6 tahapan yaitu Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, dan Deployment. Sampel UMKM kota samarinda menjadi objek pada penelitian dengan menggunakan 1000 data dari riwayat transaksi penjualan dalam kurun waktu tertentu yang diidentifikasi dengan menjalankan algoritma Frequent Pattern Growth (FP-Growth) untuk memaksimalkan kinerja komputasi dalam proses ekstraksi pola item barang. Ekstraksi pola aturan dari dataset transaksi penjualan dilakukan dengan 9 kali percobaan dengan melakukan perubahan nilai support (S) dan confidence (C) dengan hasil percobaan trbaik menghasilkan 9 best rule dengan rentang nilai S sebesar 9% - 14% dan C sebesar 60% - 75% yang mencakup aturan 2-itemset dan 3-itemset. Masing-masing rule diterapkan uji lift yang menghasilkan rentang nilai 2.790 – 3.698 dengan rata-rata nilai lift sebesar 3.26, dimana setiap aturan memenuhi nilai minimum (lift > 1.00) yang menunjukkan setiap kombinasi aturan memiliki peluang cross-selling yang baik
CITATION STYLE
Kurniawan, D., Sahata Sipayung, M., Ismayanti, R., Rivani Ibrahim, M., Bintan, Y., & Aulia Miranda, S. (2022). Optimalisasi Strategi Pemenuhan Persediaan Stok Barang Menggunakan Algoritma Frequent Pattern Growth. METIK JURNAL, 6(2), 104–114. https://doi.org/10.47002/metik.v6i2.387
Mendeley helps you to discover research relevant for your work.